
Customizing Moodle to Facilitate Integration with
Other Platforms

Madhupriya R
Department of Computer Science and Engineering,

Manipal Institute of Technology,
Manipal, Karnataka, India

Abstract — Moodle is a highly versatile learning management
system with a wide variety of tools ranging from simple grade
reports to complex assessments. In spite of its resourcefulness,
other platforms are still in use, especially due to the scalability
constraints of Moodle. In such scenarios, it highly essential to
integrate Moodle with other platforms to make the best use of
features present in all components. This can be done by
customizing Moodle and feeding it with data from other
platforms to view combined results. Data from other systems
are transferred to Moodle’s local database using secure
connections. A local plugin is developed in Moodle to fetch the
inserted data in addition to the already existing data and
create aggregate reports. Various capabilities can be defined
in the plugin to impose view and access constraints for various
roles.

Keywords—Moodle, plugin, LMS

I. INTRODUCTION

Moodle is a highly robust, open source, learning
management system (LMS) that has eased the lives of
millions of course instructors and learners across the globe
[1]. The tools provided by Moodle are highly versatile and
offer solutions to a wide range of difficulties faced in
conventional classroom environments. Moodle has been
constantly evolving with a plethora of features such as
personalized dashboards, multilingual capabilities, regular
security updates and open standards. It is highly secure
with multiple authentication and enrollment options
available. Also, it has a well formed community to resolve
all technical concerns and provide constant support to its
users.
In spite of its resourcefulness, Moodle has failed to replace
some of the existing LMSs. This is partly due to the
scalability constraints of Moodle, when supporting a very
large number of users [2]. Its user interface and database
are organized very inefficiently and consumes a lot of
space. Also, the tables in its database are not well
connected and hence simple tasks require complex queries
that join multiple tables, thereby causing a huge overhead
of space and time. It is difficult to incorporate Moodle in a
distributed management model wherein a single institution
has multiple schools and departments with smaller groups
among them. Student management and human resource
systems are kept separately in these institutions to avoid
space overhead and ease maintenance. It is difficult to
integrate Moodle with these systems as Moodle has its own
storage techniques and expects data to be identified with its
own specific attributes making it inflexible.

In contemporary times, there are numerous institutions
which have adopted the methodology of flipped
classrooms. The conventional classroom environment is
slowly losing its charm in today’s fast paced world. An
enhancement in the quality and capabilities of LMSs is the
major cause for this growth. Apart from the LMSs, there
are numerous course management systems such as Open
edX which offer Massive Open Online Courses (MOOC)
to millions of users across the globe [3]. These systems are
well suited to support several concurrent users accessing
the same resources without degrading the user experience.
Course management systems are a major requirement to
support this new age blended learning practice.
In such a scenario where both course management and
learning management systems are required to be used
together, it is highly essential to integrate the two into a
single unit. It can be argued that either of the two can be
used to perform the tasks of the other, but this will just
impose a high overhead in the implementation. It is more
desirable to keep the systems as distinct entities and use
them only for the capabilities they specialize in. Integration
is necessary to make use of the best features provided by
these systems and summarize the overall system at a single
point. There are scenarios where a single institute supports
both of these and manage student and instructor data on
both the platforms. It is a cumbersome task for an
administrator to manually fetch data from both the ends
and then create a separate platform to view combined
reports.
To integrate these entities, this paper suggests a method of
creating a local plugin at the Moodle end. Moodle is highly
developer friendly and customizable and therefore a plugin
can be easily developed. Data from other systems can be
transferred to Moodle’s local data store and the plugin can
be customized to fetch the required data from it. Also,
Moodle is more preferable when it comes to generating
reports and statistics and it has specialized tools for doing
so.
Various permissions can be set in the plugin so that users
with specified roles are only allowed to view data specific
to their role. The plugin can be added to the various inbuilt
sections that are already present in Moodle and therefore
make it user friendly without altering the existing look and
feel of Moodle. The overall goal of this integration is to
improve the quality of learning and make students and
instructors well equipped with the best possible tools that
are available today.

Madhupriya R et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4353-4356

www.ijcsit.com 4353

II. MOODLE ARCHITECTURE
Overview- Moodle is an open source software which can be
easily installed by following a step by step procedure [4].
An Apache server is required to be installed along with
additional PHP packages that might not be present in the
host computer. Moodle’s code is written in PHP. The code
is located in the /var/www/html/moodle/ directory, var
being the web root. It must be kept in mind that the owner
of the moodle directory should be the web server so that it
can write to it and make changes. Also, a local repository
with the name of moodledata is set up in the web root
folder with the required permissions. This is the default
location where all uploaded and auto-generated files are
stored. Various other parameters such as login details are
updated during the web installation of Moodle to suit
custom needs. All configuration parameters, network
addresses and global variables are located in the config.php
file which is present in the Moodle directory. The
parameters present in this file can be used throughout
Moodle and hence maintain uniformity.

Database- Moodle requires a database which can be
MySQL, PostgreSQL, Microsoft SQL Server or Oracle.
During its installation, a prefix is supplied by the installer
which precedes all table names used in Moodle for
interoperability with other databases. The default storage
engine is made innodb which ensures high reliability and
performance to support high concurrency. The install.xml
file present in the db folder of each plugin defines the
database structure of Moodle. It is recommended that file
shouldn’t be modified manually as it is auto-generated. It
can be modified from the XMLDB Editor present in the
site administration menu. The links between the tables in
Moodle are not very apparent and complex. Consequently,
elaborate queries are required to fetch simple data items.

Roles- Moodle allows the site administrator to define
various roles and capabilities. The most common roles are
a student, teacher, manager, guest, non-editing teacher and
course creator. A role has a list of permissions, which can
be modified. Roles are instrumental in maintaining the
hierarchy and organizational structure of the institution that
is using Moodle. Roles can be managed, assigned,
overridden and switched from the administration menu. For
example, a course editing teacher can be allowed to switch
to the role of a student to see what the course content looks
like for a student. Also, while assigning roles, the context
can also be set so that the capabilities defined in the role
are applicable to a particular context such as course or
category.

Moodle homepage- The main page of Moodle is divided
into blocks and sections. The navigation block appears at
the top left which is customized according to the profile of
the user. It shows the profile of the user along with all
course content for which the user is enrolled. By clicking
on a particular course, various sections appear in the
middle of the page with is generally organized as a weekly
list of sections. The settings block is present below the

navigation block which also contains the course
administration menu to view the grades. The site
administrator performs all functions from the list of
sections present in the block which include site
administration, role switching and editing user profiles.
The right hand corner contains optional, informative blocks
such as a calendar, latest news and recent activity. The
organization and content of all these entities can be
modified by turning the editing on from the top right
corner.

III. PLUGIN DEVELOPMENT
A local plugin needs to be developed in Moodle when the
requirements are not standard and the existing plugins are
insufficient. Plugins provide a way for customization and
also, to fetch data from newly created tables. They can also
be used to communicate with external systems and define
new capabilities. These plugins go into the /local directory
of Moodle and can be added to various pre-existing blocks
of Moodle. The plugin can also be contributed to the open
source Moodle community, thereby being beneficial to
others facing similar difficulties.

To develop a plugin, a directory structure according to the
Moodle documentation needs to be created [5]. Various
mandatory files need to be added to the plugin folder. Also,
required permissions must be set for the plugin to be
accessible by the web server. The directory structure is not
initially created in the target folder which is the /local
directory. It is initially developed elsewhere. Later, while
installing it from the UI of Moodle it is zipped and added
to the /local directory.
 .
 ├── db
 │ ├── access.php
 │ └── install.xml
 ├── features.txt
 ├── finalResult.php
 ├── index_form.php
 ├── index.php
 ├── lang
 │ └── en
 │ └── local_edx_quiz.php
 ├── lib.php
 ├── quizResult.ph
 ├── settings.php
 └── version.php

Fig. 1 Directory structure of plugin

The access.php file is used to define various capabilities in
the plugin. These are the various view level constraints in
accordance with the roles. The install.xml file contains the
schema structure that the plugin will use. As mentioned
previously, it must not be modified manually and is done
by the XMLDB Editor. The lib.php file comprises of all
navigational hooks and visibility modes of the plugin. This

Madhupriya R et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4353-4356

www.ijcsit.com 4354

file is automatically added by the config.php file that is
present by default. The settings.php file is used to define
configuration options. New items are added to the admin
tree block from here. It is also contains the version details
which are highly essential for Moodle to update its
database and invalidate all caches. The index.php file is the
first page that the plugin redirects to and it can be
customized according to the requirements. Various other
files can be added to the plugin that can open from links
present in the index file. All these files can use the global
parameters present in Moodle so that all changes can be
made at a single point. Moodle has various HTML and
PHP functions that developers can use so that the look
and feel of Moodle is not altered. The developed plugin can
be compressed and installed from the UI. Changes in the
database can be done from the XMLDB Editor. The
database must be reloaded and upgraded after the changes
are performed. The plugin can be added to various blocks
such as the course administration block by modifying the
lib.php file.

Fig. 2 New plugin added to XMLDB Editor

IV. DATA TRANSFER FROM OTHER PLATFORMS

Data can be easily transferred to the local data store of
Moodle from other sources. Various file transfer
techniques such as ftp, scp and shp are suggested.
Structured data is preferred so that there is lesser overhead
at the destination end. All the data conversion should be
done before transferring the data at the source itself to
ensure clean and concise transfer by using techniques such
as HDFS with map reduce. The structured data, usually in
the form of csv files can be dumped into new tables in the
Moodle database using straightforward queries. The tables
must be dynamic so that varying sizes of input can be
constantly dumped without any major rework. The transfer
mechanism can also be made automatic with web services
that have push or pull techniques. The framework can be
customized with a rules engine with a stage and forward
mechanism. Also, utilities such as cron can be considered
viable to schedule jobs. The real challenge here is to create
queries that link the fresh data with that which is already
present in Moodle.

V. EXPERIMENT

An integration prototype was tried out between a
customized version of open edX and Moodle. Data from
the former platform was already available in csv format
after transforming it as data conversion is immaterial to this
experiment. The files were transferred using scp to the

database directory of Moodle. The data contained quiz
details along with the names and email ids of students. The
scenario was that a single student is registered with the
same email-id on open-edX and Moodle. There were
quizzes conducted on both platforms and hence there was
an urgent need for the teacher in-charge to view aggregate
results at a single point. The common identifier is the
email-id which is required to be the same on both the
platforms. Two new tables mdl_edX_quiz and
mdl_edX_quiz_results were created in the Moodle
database. The former was used to store quiz details while
the latter storing the results obtained in these quizzes along
with the quiz identifier from the first table.

TABLE I
DESCRIPTION OF MDL_EDX_QUIZ

Field Type Null Key Default Extra

Quizid Integer(11) NO PRI NULL auto_increment

Quizname varchar(30) NO NULL

Courseid varchar(20) NO NULL

Maxmarks Integer(11) NO NULL

TABLE III
DESCRIPTION OF MDL_EDX_QUIZ_RESULTS

Field Type Null Key Default Extra

Emailed varchar(255) NO NULL

Username varchar(100) NO NULL

Quizid Integer(11) NO Foreign NULL

Courseid varchar(20) NO NULL

Result Integer(11) NO NULL

Data from the csv file was inserted into these two tables
using MySQL queries. Various permissions were granted
on the database to make the transfer possible.

A local plugin by the name edx_course was developed in
Moodle and added to the course administration block.
Permissions were set in it so that teachers only view results
of students for the courses they are undertaking while
administrators can view overall results. Students can view
their own results in all the quizzes in an aggregated
fashion. The primary purpose of the plugin is to fetch data
from the edX and Moodle tables and combine those using
dynamic queries. The tables used in Moodle were
mdl_user, mdl_quiz, mdl_quiz_attempts,
mdl_user_enrolments and mdl_role_assignments. Some of
the aggregate functions in MySQL had to be used to
convert data from rows to columns against the common
email-id.

The index page of the plugin had links to two new pages-
quizResult.php and finalResult.php. The quiz result page
had a dropdown containing the names of all the edX
quizzes. The dropdown is inherited from the inbuilt

Madhupriya R et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4353-4356

www.ijcsit.com 4355

Moodle forms class. Clicking and submitting any of the
names displayed the quiz attempts of all the students who
participated in the quiz along with the grades. This is useful
when Moodle is just used to view reports while the actual
activities are taking place at another point.

Fig. 3 Quiz Result Page

Creation of the other page-finalResult.php was the most
challenging task. This page displayed the edX grades
alongside Moodle grades for the same email-id. This was
used to assess the aggregate performance of students and
give the teacher an overall picture of the student’s progress.
Moodle contains a rich set of inbuilt APIs such as the
html_table element which lets you add tables that retain the
look and feel of Moodle.

Fig. 4 Final Result Page

VI.CHALLENGES

The primary challenge of integration is the scalability
constraint of Moodle [2]. Moodle is a heavy weight
platform and since the databases occupy a very large
volume of space, proper care is to be taken while writing
queries. Code inside a loop and join queries must be strictly
monitored. Also, caution must be taken while using
external function calls as the function state causes a stack
overhead. As a rule of thumb, every page must use only a
fixed set of database queries to avoid overburdening it.

Also, efficient hardware is required to cater to the
challenging performance requirements. Institutions must be
well convinced to support integration and data from other
platforms must be easily available. If a lot of data at other
ends is unstructured, a lot of effort will have to be spent on
development. Also, generating dynamic queries to handle
varying data sizes from external sources is a key concern
and must be done efficiently.

VII. CONCLUSUSION AND FUTURE WORK
The primary objective of this integration is to reduce the
manual effort undertaken by administrators of institutions
wherein multiple LMSs are in use. Integration is
instrumental in the total assessment of students, thereby
improving the quality of learning. A complete analysis of
the strengths and weaknesses of learners can be understood
and worked upon. The prototype that has been created has
laid down the foundation for total integration and has
immense scope in future. Data transfer can be automated
by using web services that keep transferring new data at
fresh intervals and synchronizes it. An export facility can
be added to the plugin for administrators to use the data
obtained from the plugin for future needs. Also, some sort
of shared memory can be created with bidirectional transfer
of data to create a fully integrated system with minimum
transfer latency.

ACKNOWLEDGMENT

I express my sincere gratitude towards Professor Deepak
B. Phatak and the Indian Institute of Technology, Bombay
for providing me with the platform and resources without
which this project would have been impossible.

REFERENCES

[1] Suleiman Alhaji Ahmad, Umar Bawa Chinade, Abdu Muhammad
Gambaki, Shehu Ibrahim, and Nasiru Ahmed Ala, “The need for
Moodle as a Learning Management System in Nigerian Universities:
Digesting University Utara Malaysia Learning zone as a case study,”
Academic Research International, vol. 2, no. 3, pp. 446, May 2012.

[2] Catalyst IT Limited. (2015, Sep 3). Technical Evaluation of selected
Learning Management Systems [Online]. Available:
https://moodle.org/pluginfile.php/1540/mod_folder/content/0/Compa
rativas/LMS_Technical_E_ion_-_May04.pdf?forcedownload=1

[3] Daradoumis T, Bassi, R, Xhafa, F and Caballe, S, “A Review on
Massive E-Learning (MOOC) Design, Delivery and Assessment,”
2013 Eighth International Conference on P2P, Parallel, Grid, Cloud
and Internet Computing, Compiegne, 2013, pp. 208 – 213

[4] Howtoforge. (2015, Sep 3). How to install Moodle on Ubuntu 14.04
[Online]. Available: https://www.howtoforge.com/how-to-install-
moodle-on-ubuntu-14.04

[5] Moodle. (2015, Sep 3). MoodleDocs [Online]. Available:
https://docs.moodle.org/

Madhupriya R et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4353-4356

www.ijcsit.com 4356

